If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-6y-4=0
a = 4; b = -6; c = -4;
Δ = b2-4ac
Δ = -62-4·4·(-4)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-10}{2*4}=\frac{-4}{8} =-1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+10}{2*4}=\frac{16}{8} =2 $
| 12x+10(x-2,5)=14 | | (x-5)-60=60-(x-5) | | (7x-3-3x=13-2) | | q^2+14q+4=0 | | 7u+47=-9(u+9) | | 4x+5x=5x+2 | | m+18=15 | | u^2+12u+18=0 | | -22=v+-16 | | a^2-3a-8=0 | | 27=-3y+7(y+5) | | 3w+2(w-5)=5 | | 11/2+0.6x=16 | | 159=-u+226 | | |7t-4|=10 | | -y+96=271 | | 5x–2=20+9x | | 28-y=157 | | -7=a+-17 | | 2^122=100^x | | 2^122=10^x | | c+16=-4 | | -2x2+16x+1=0 | | 5x=15x(6x+6) | | 3=4x+-17 | | 1=x+-4 | | p3+9=11 | | 14=y+-4 | | w-7=198 | | 125=25-5x | | 3v+6v—19=-91 | | 6=-12+x |